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Executive summary 

A state-of-the-art km -scale limited -area forecasting system has been used to investigate the 

impact of enhanced surface data assimilation on the short-term prediction of extreme 

precipitation events. Data assimilation concerned with finding the best possible initial state 

by combining observations with a model, is a key aspect for short -term weather prediction. 

The enhancements comprise an improved representation of horizontal background error 

statistics, the introduction of a Kalman -filter based data assimilation methodology and the 

utilization of satellite based soil moisture information. The functionality of the enhancem ents 

of some key aspects of the surface data assimilation was demonstrated . Awaiting a se mi-

operational systematic evaluation ov er a longer time period, we here  checked that our 

adjustments did  not negatively impact a main purpose of our NWP system in IMPREX, which 

is predicting extreme precipitation events. In this study we confi rm that our s urface data 

assimilation adjustments do  not  negatively affect extreme precip itation  forecasts, and even 

tend to  slightly improve  them, although not  in a robust statistical sense. 
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 Introduction  

The Earth's surface plays a central role both for hydrological and meteorological forecasting. 

On the one hand, most socio -economic processes that are affected by weather and water 

are situated on the Earth's surface. On the other hand, the exchange of heat, water and 

water vapour between the surface, its  deeper layers and the atmosphere are important 

drivers for the meteorological and hydrological state s of the EarthŚs system. In this work we 

focus on the effect of an accurate representation of surface properties for short term ( up to 

a few days) numerical weather prediction (NWP). Data assimilation is a key aspect of NWP, 

which optimally combines observations with a  model in order to spread the observational 

information and to produce the best possible initial state  for the model . Enhanced surface 

data assimilation in NWP can lead to improved prediction capabilities of extreme 

precipitation  events, which is highly i mportant , among others , for hydrological run -off 

forecasts. A number of  scientific studies have earlier shown a significant impact of soil 

moisture conditions on weather forecast skill at short and medium range (van den Hurk et 

al. 2008; Drusch and Viterbo 2007; Douville et al. 2000; Mahfouf et al. 2000; Beljaars et al. 

1996) as well as at seasonal range (Weisheimer et al. 2011; Koster et al. 201 1, 2004). 

 

In numerical weather prediction (NWP)  models the atmospheric state is  typically represented 

by the variables: surface pressure, temperature, specific humidity, wind components, clouds 

and surface variables. The model variables are defined on discrete grid points. Starting from 

an initial state, the forecast models then integrate s this state  forward in time with the aim to 

simulate the atmospheric evolution on the temporal and spatial scales of the model. Non 

resolved sub-grid processes are parameterised to represent their average effect at t he scales 

resolved by the model .  

Data assimilation is the process where the most likely initial state is estimated, given the 

available observations and a so -called firs t guess or model background in terms of a 

previous forecast.  Usually an intermittent data assimilation cycle is used. In case of a 3 -hour 

intermittent data assimilation cycle this means that a 3 -hour forecast launched on 00 UTC 

(from an initial state produ ced by the data assimilation  for 00 UTC) will 3 hours later be 

used as background state in the data assimilation at 03 UTC. The 3-hour forecast launched 
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on 03 UTC will then be used a s background state at 06 UTC and so forth. Also forecast s of 

longer range t han 3 hours are produced but it is the 3-hour forecast that is used for data 

assimilation within the assimilation cycle procedure.  

It was early realised (Lorenz, 1965) that the forecast quality is strongly dependent on an 

accurate description of the initi al state and hence on the abilities of the assimilation system. 

The reasons for this is that  the atmospheric  system is strongly non -linear and that small 

errors, inevitable  inherent in the modelling system due to limited model resolution, 

simplifying assum ptions and limited observations , sometimes grow large and deteriorate  the 

forecast. However, the sensitivity to errors in the in itital state depends on the atmospheric 

conditions.  In general, t he quality of the forecasted precipitation during extreme 

precipitation events is sensitive to small errors in the model state  during and before the 

event. During other atmospheric conditions , like for example in a high -pressure system with 

subsiding air -mass the forecasts of precipitation are less sensitive to errors in the model 

state.   

 

The numerical weather prediction system used here is developed in the framework of the 

shared ŗAire Limit®e Adaptation Dynamique D®veloppement InterNationalŗ (ALADIN) - High-

Resolution Limited -Area Model (HIRLAM) NWP system. This system can be run with different 

configurations and here the so -called HIRLAM ALADIN Regional Meso -scale Operational 

NWP In Europe-Application of Research to Operations at Meso scale (HARMONIE-AROME) is 

used (Bengtsson et al ., 2017). The main com ponents of the system are: surface data 

assimilation, upper -air data assimilation and the forecast model for the forward time 

integration. The data assimilation and modelling components are described in sectio n 2, 

with emphasis on surface data assimilation.  

 

We aim to improve the short -term ( up to a few days) prediction of extreme precipitation 

and hydrological processes by improving the representation of the surface initial states 
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through  the introduction of r efinements in the surface data assimilation  used in the 

reference HARMONIE-AROME state-of-the art km -scale forecasting system. The refinements 

concern both improved data a ssimilation methodologies and enhanced observation usage.  

A Kalman-filter based  data assimilation techni que has been introduced to obtain more 

situation dependent data assimilation for soil moisture and surface temperature.  In the  

horizontal  direction , the background error variation  used for the soil moisture and the 

surface temperature d ata assimilation has been enhanced to better derive small scale 

variations in surface conditions . Observation usage has been enhanced by assimilating 

surface remote sensing data related to soil moisture . Based on the impact of soil moisture 

initialisation on forecast skill found within a number of scientific studies and on operational 

experiences from the HARMONIE -AROME modelling system we see a potential for 

improvement of short -range km -scale NWP forecast by enhancing the surface data 

assimilation. Three cases associated with heavy precipitation studied within IMPREX were 

used to evaluate the enhanced surface data assimilation. The cases cover both synoptically 

driven precipitation in mountainous areas and convective precipitation in flat terrain. The 

cases have the potential  to be influenced by surface fluxes influenced by the surface state  

and the surface data assimilation . Awaiting a semi -operational systematic evaluation of the 

enhancements over a longer time period, we check that , for these three selec ted cases, our 

adjustments do no negatively impact a main purpose of our NWP system in IMPREX, which 

is predicting extreme precipitation events. The extreme precipitation events and the general 

model se tup are  described in section 3. Section 4 deals with a demonstration of the 

functionality of th e data assimilation improvements  while section 6 and 7 deals with the 

design of the experiments and the corresponding results. Finally conclusions are presented 

in section 7.    
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 The NWP system  and its default surface data assimilation  

General overview 

The main components of the HARMONIE-AROME configuration of the HIRLAM ALADIN 

NWP system are: the surface data assimilation, the upper -air data assimilation and the 

forecast model.  Here we used a version of the HARMONIE -AROME configuration referred to 

as cy38h1.2. The forecast model configu ration, e.g. dynamical core and physical 

parameterizations, are  described in detail in Seity  et al. (2011) and Bengtsson et al. (2017). It 

has a spectral representation with a non -hydrostatic formulation. Stratiform and deep 

convective clouds are explicitly represented,  while for shallow convection a sub-grid 

parameterization is applied using the E DMF (Eddy Diffusitivity Mass Flux)  scheme. The 

representation of the turbulence is based on  a prognostic Turbulent Kinetic Energy (TKE) 

equation combined with a diagnostic mixing length  (Cuxart et al ., 2000). The radiative 

transfer of the short -wave spectrum is de scribed with six spectral bands (Fouquart  and 

Bonnel., 1980) and the long -wave radiation is mode lled using 16 spectral bands in 

accordance with M lawer et al. (1997). Surface processes are modelled using SURFEX (Masson 

et al, 2013) together wi th a three layer ISBA scheme  (Noilhan and Planton, 1989). Snow 

effects are parameterized using a one layer snow scheme in accordance with Douville et al . 

(1995).  

 

Lateral boundary conditions are  provided by the European Centre for Medium -Range 

Weather Forecasts (ECMWF) global forecast model . Operational  forecasts launched each 6 

hours with a 1 hour s output frequency are used. In addition, a spectral large scale mixing of 

the background state,  the 3 h our HARMONIE forecast fields with the l ateral boundary  

ECMWF fields is applied  (M¿ller et al ., 2017). In this way we hoped to benefit from the high -

quality large scale information from the  ECMWF global forecasts in the regional 

HARMONIE-AROME data assimilation.  
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In the  3-dimensional variational  upper -air data assimilation applied (Fischer et al., 2005), 

conventional types of in -situ measurements  are used, including:  radiosonde, pilot -balloon 

wind, synop, ship, and aircraft measurements.  These in-situ measurements concern surface 

pressure, temperatures, winds and relative humidity. In addition , radiances from the AMSU -

A, AMSU-B/MHS instruments were used. Climatological background error statistics are used 

and these are derived from an ensemble of HARMONIE -AROME forecast differences 

obtained through  downscaling of ECMWF Ensemble Data Assimilation (EDA) -based forecast 

fields over the limited area model domain. Then the evolved high -resolution  ensemble was 

scaled to be consistent with the amplitude of the 3 -hour  forecast error for HARMONIE -

AROME. 

 

The default  HARMONIE-AROME surface data assimilation is based on optimal interpolation  

of Synop observations utilizing horizontally homogenous  and isotropic  background error 

statistics. Synop measurements of two metre temperature and relative humidity as well as 

snow observations are then used to initialise the surface temperature, soil temperature, soil 

moisture and snow field  of the surface part of the grid -points . There is however room for 

improvemen t regarding both methodology and observation usage for the surface data 

assimilation.  Given the impact of soil moisture initialisation on forecast skill found within a 

number of scientific studies and the rather basic current system it is believed that 

enhancement of some key aspects of the HARMONIE -AROME surface data assimilation will 

lead to improved short -range numerical weather pre diction. In particular we think that 

spatial inhomogen eities and flow  dependency can be better represented  and we see a 

potential in utilizing satellite based information.  The current default system and 

enhancement carried out within this project are described in more detail below .  

 

The HARMONIE-AROME system was applied in a deterministic mode, where only one initial 

state is estimated for each situation and only one forecast is laun ched from that initial state   
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Default  surface data assimilation  of temperature and soil moisture  

The surface data assimilation is to initialise the land area part of the grid -points. Variables to 

be initialised are : surface tempe rature, soil temperature , soil moisture and snow. The 

initialisation is done applying an optimal interpolation technique and by util izing Synop 

observations of two -metre temperature and relative humidi ty as well as snow observations.   

 

For temperatures and moisture , the surface d ata assimilation procedure is comprised of two 

steps. In the first step , a two -dimensional data assimilation based on the CANARI (Code 

dŚAnalyse N®cessaire  ̈ ARPEGE pour ses Rejets et son Initialisation) optimal interpolation 

scheme (Taillefer, 2002) is carried out to horizontally distribute the information from two -

metre temperature and relative humidity observations  and to get updated two -metre 

temperature and two -metre relative humidity values over all grid -point s containing land 

parts, as described in equation ( 1): 

 

●╪ ● ║╗╣╗║╗╣ ╡ ◐ ╗●                                              (1) 

 

where xa and xb represents respectively the analysed and background values of grid -point 

two-metre temperature and relative humidity . B and R are the matrices containing the 

covariances of background errors and observation errors, respectively. Furthermore, y 

denotes the vector of the observations and H is the observation operator, projecting the 

model state on the observations. Finally, T denotes tr anspose of matrix and -1 denotes 

inverse of matrix. The observation errors are assumed to be uncorrelated  while the 

background errors are assumed to have an isotropic and horizontally homogenous 

background error statistics with a horizontal correlation function given by equation (2):  

 

ὧέὶὶȟ Ὡ
ȟ

                                    (2) 
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Here corr i,j
 

 represents the horizontal background error correlation between points  i and j 

separated apart by a distance r,i,j. The parameter a characterises the correlation length scale 

and has a value of 85 km  for humidity and 80 km for temperature . The observation error 

standard deviations for temperature and relative humidity are assumed to be 1 .4 K and 10%, 

respectively. The corresponding background er ror standa rd deviations are assumed to be  1.6 

K and 18%, respectively. The correlations are sometimes  referred to as structure functions.  

These numbers are applied generally  irrespective of location and season based on Taillefer 

(2002). 

 

In a second step, after the two -dimensional horizontal distribution just described, the two -

metre temperature and relative humidity information is vertically distributed to update the 

surface temperature and soil moisture applying anoth er optimal interpolation scheme as 

described in equations (3-6). This is done independently for each grid -point using the 

horizontally distributed two -metre temperature and relative humidity information to update 

the surface and soil temperatures as well as  soil moisture:  

 

 

 

ύ ύ (Ὕ Ὕ + (ὙὌ ὙὌ        (3) 

 

ύ ύ (Ὕ Ὕ + (ὙὌ ὙὌ        (4) 

 

Ὕ Ὕ ‘(Ὕ Ὕ + ‘(ὙὌ ὙὌ        (5) 

 

Ὕ Ὕ ‡(Ὕ Ὕ + ‡(ὙὌ ὙὌ        (6) 

 

 

where T2m and RH2m denotes two -meter temperature and relative humidity , respectively. Ts 

and w g denote surface temperature and ground  layer moisture and T2 and w 2 denote  

second layer temperature and soil moisture, respectively.  The surface temperature layer is 
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associated with a time scale of less than one hour while the second layer time scale is 

represented by the mean of T s over one day. The surface soil moisture layer is on the order 

of 1 cm thick and the thickness of the second and third  layers are defined by the root depth 

and soil depth, respectively, which are vegetation type dependent.  Here superscript  a, b and 

o denotes analyzed, background and observed value respectively, where information from 

the observed value has actually been horizontally distributed to all surface grid -point using  

the horizontal optimal interpolation  in the first step .  Furthermore, ƽ1, ƽ2, ƾ1, ƾ2, ə1, ə2, ǈ1 

and ǈ2 are empirically derived  coefficients described in (Giard and Bazile, 2000). The 

lowermost s urface layer is associated with time -scales longer than a day and is not updated 

by the surface data assimilation . 

 Model setup  and extreme precipitation events  

The HARMONIE-AROME modelling system as described above has been set-up over a south 

European dom ain shown in Figure 1 to investigate the model capability to predict three 

different extreme precipitation events . The cases cover both synoptically driven precipitation 

in mountainous areas and convective precipitation in flat terrain. The cases have the 

potential to be influenced by surface fluxes influenced by the surface state and the surface 

data assimilation. . A total of  768 × 648 horizontal grid -points were used with a horizontal 

model resolution of 2.5 kilometre s and 65 vertical levels.  In the upper -air data assimilation , 

conventional types of observations and satellite measurements from the AMSU -A and 

AMSU-B/MHS instruments, placed on -board polar orbiting satellites , were used. In addition, 

a spectral large -scale mixing of the backgroun d state (the 3 h HARMONIE forecast ) with the 

lateral boundary ECMWF fields was applied. In this way , we hoped to benefit from the high -

quality large -scale information from the ECMWF  global forecasts in the regional 

HARMONIE-AROME upper-air data assimilatio n. A 3-h data assimilation was applied and 

longer forecasts up to 48 hours forward in time were launched every sixth hour. The 

extreme precipitation events all took place on a location within the blue circle within Figure 

1 and are described in Table 1.  One of the events , studied in more detail,  is associated with 

the huge convective precipitation cell in Northern France, clearly visible in the satellite data 
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shown in Figure 2.  At least some of the events were associated with flooding and are as 

well of importance for  a hydrological modelling perspective. Here we focus on the 

importance of surface data assimilation of the HARMONIE -AROME modelling system for 

prediction of the precipitati on events. 

 

 

 

Figure 1: HARMONIE -AROME M odelling domain  (red frame) and area of studied 

extreme precipitation events (blue circle).  

 

 

Table 1 : Description of extreme precipitation events studied with HARMONIE -

AROME modelling system.  
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Date Description  

12-19  June 

2013 

Total rainfall of 110 -180 mm  or more in the higher altitudes 

in less than 48 hours in the Pyrenees area in s outh -west 

France.  

21-28  July 

2013 

A huge convec tive precipitation cell crosses Northern France 

during the night between the 26 and 27 July 2013 . 

22-25  June 

2014 

Heavy precipitation event in the in the Pyrenees area in 

south-west France. Total precipitation of 38  mm in 1 hour at 

the commune  of  Maul®on and 70-100 mm over a few hours  

in the same area.  

 

 

 

Figure 2 : Channel 9 i nfrared brightness temperature  at 27 July 03. 30 UTC derived 

from the SEVIRI instrument . The low values over Northern France are associated 

with a convec tive precipitation cell over  Northern France. 
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 Enhancements in surface data assimilation of temperature and soil moisture  

 Overview 

The default surface data assimilation of the HARMONIE -AROME modelling system, 

described in section 2 has been enhanced in three aspects.  These three aspects are related 

to an improved horizontal and vertical distribution  of temperature and moisture information 

in the surface data assimilation, as well as to the utilization of satellite based soil moisture 

data.  The enhancements are described in detail in the three sections below. 

 Horizontal distribution  

The choice of uniform spatial correlation used in the reference  setup has clear limitations  

when terrain is hilly and around coastlines. The enhanced background error statistics for 

temperature and humidity co nsist in utilizing the  correlation function  described in  

Hªggmark et al. (2000), from now -on re ferred to as MESCAN, and given by : 

 

ὧέὶὶὶȟȟὨȟὨ πȢυὩ
ȟ

ρ ȟ Ὡ
ȟ

Ὂ Ὠ ὊὨ                                      (7) 

 

where  Fp and Fz are empirical functions describing the difference due to the difference of land-fraction 

(dP ) and the difference of height (dz ) respectively, between points i and j.  As described in Häggmark et 

al. (2000) both functions are linear and vary from 1 for dp = dz =0 to 0.5 for dp =1 and dz larger than 500 

m, respectively.  The functions are described in Häggmark et al. (2000). The parameter L 

characterizes the correlation le ngth scale and has a value of 190  km for both relative 

humidity and temperature at the two metre level. Given the dif ference in correlation 

function this corresponds roughly to the values 80 km and 85 km used together with the 

correlation function specified in equation (2).  

Vertical distribution  

The current reference surface scheme is unable to represent the flow -dependency inherent 

in the coupled atmosphe ric/surface system. The enhanced vertical distribution of two metre 

temperatures and two metre temperature information is based on a n extended  Kalman-filter 

(EKF) technique  which is considered standard in the theory of nonlinear state estimation  
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(Julier and Uhlmann, 2004). Formally the equation of the analysed state of the  linear 

Kalman-filter is given by equa tion (1),  as for optimal interpolation. For the  EKF, however, the 

components of the Jacobian of the observation operator,  H i,j are approximated by equation 

(8). 

   

╗░ȟ▒
◐

●
ḙ

●

●
                                             (8) 

 

Here yi represents different observations,  xj represents different model state variables and ŭxj represents a 

small perturbation of xj. Following Mahfof et al. (2009) the Jacobians were approximated using equation 

(8) by carrying out one perturbed run of the surface model for each control variable of the surface data 

assimilation, which in our case is in the number of four.  So that for our system equation (8) requires four 

extra runs to estimate the state dependent Jacobian. This procedure results in a dynamic, flow-dependent, 

relation between model state variables and observations, rather than the static values imposed by 

equations (3-6). The relation between the observations and the model state and the observations is thus 

flow-dependent in the case of EKF, which is not the case for the default OI system. Like for the case with 

optimal interpolation, a 3-hour data assimilation cycle was applied for the state variables. With a Kalman-

Filter approach one also has the possibility to estimate the analysis error covariance matrix and to 

propagate it to obtain a flow-dependent background error covariance matrix. For simplicity reasons, we 

however chose to apply a static background error covariance matrix which implies that our enhanced 

methodology should be denoted a Simplified Extended Kalman Filter (SEKF). A next step would we to 

also include a flow-dependent background error covariance matrix and to evaluate its performance. The 

background errors of the vertical background error covariance matrix are assumed uncorrelated and the 

standard deviations are given by 0.15 m3/m3 0.1 m3/m3, 2.0 K and 2.0 K for ύȟύȟὝ and Ὕ, using the 

terminology of equations (3-6). Also, the observation errors are assumed uncorrelated and these are given 

by 1.0 K and 0.1% for two-metre temperature gridded temperature and two-metre relative humidity, 

respectively. For satellite-based pseudo-observations of  ύ , as described below, the observation error 

standard deviations are set to 0.4 m3/m3. The error specification is taken from Mahfouf et al. (2009). 

  

Use of satellite -based soil moisture observations  

The utilization of satellite based soil moisture products has potential for obtaining an improved model soil 

moisture estimation through surface data assimilation. One of such satellite-based soil moisture products, 

which has been investigated here, is the data from the Advanced SCATterometer (ASCAT) instrument 

placed onboard the EUMETSAT (European Organisation for the Exploitation of Meteorological 

Satellites) MetOp-A and MetOp-B polar orbiting satellites, launched in 2012 and 2016 respectively. The 

ASCAT instrument is an active real aperture radar backscatter instrument which operates in the C-band 

(5.255 GHz) using six vertically polarized antennas. The spatial resolution of the level 2 (L2) gridded 
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data (produced using the Discrete Global Grid, DGG) used in this paper is about 25 km. Soil moisture 

from ASCAT (version W54) is derived using the change detection approach described by Wagner et al. 

(1999). The derived surface soil moisture, measured to a depth of approximately 0.5 cm to 2 cm, 

represents the degree of saturation from 0 % (dry) to 100 % (saturated). It is derived by scaling the 

normalized backscattering coefficients between the lowest / highest values corresponding to the driest / 

wettest soil conditions. The approach is based on the assumption that over a long period of time (in our 

case two months) the highest (lowest) observed reflectivity corresponds to the maximum (minimum) soil 

moisture. 

 

In order to relate the ASCAT level 2 surface top layer soil moisture product to the HARMONIE-AROME 

model characteristics a pre-processing is applied. This is needed since in the present HARMONIE version 

we do not have an observation operator that relates the surface conditions to the raw satellite 

measurement. The pre-processing consists in, for each horizontal position of the model domain with 

observation coverage, finding the maximum and minimum observed ASCAT surface top layer soil 

moisture values (έὦί , έὦί ) from data over an extended period of two months. It should 

be noted that this period was constrained by simultaneously available satellite and model data and is on 

the shorter side to assure sufficient correspondence between the dynamic ranges of the 

satellite data and the model.  After semi -operational runs have started a more extended data 

set can be built. A future alternative co uld also be to directly relate the model soil moisture 

to the raw backscattered signal  from the SCATTEROMETER instrument onboard the satellite. 

For the corresponding positions and period also the maximum and minimum soil moisture values 

(◌▌
□▫▀□╪●, ◌▌

□▫▀□░▪) of the uppermost surface level from HARMONIE is calculated. The model values 

are taken from a two-month model run carried out for the period corresponding to the satellite 

observations. The maximum and minimum value of the ASCAT level 2 surface top layer soil moisture 

product and the uppermost surface level soil moisture values from the learning period (έὦί  are 

then used to convert the surface top layer soil moisture product for a particular time to uppermost level 

soil moisture pseudo-observation ◌▌
╪▼╬╪◄). The conversion is according to equation (12) and is 

graphically illustrated in Figure 3.         

 

◌▌
╪▼╬╪◄◌▌

□▫▀□░▪ ◌▌
□▫▀□╪●◌▌

□▫▀□░▪

έὦί έὦί  )   (12)                                                                                    

 

Here the model values are taken from the grid-point closest to the position of the observations. The 

procedure is carried out individually for the ASCAT instruments on the METOP-A and METOP-B 

satellites, which have different satellites passes. Potential differences in characteristics between ascending 

and descending satellite passes are implicitly handled by the fact that the conversion is done individually 

for each horizontal position and each position is generally covered by a satellite observation by either an 

ascending or a descending satellite passage. A proper statistical relation between the ASCAT level 2 

surface top layer soil moisture product and the model relies on a long enough period to cover all realistic 

soil moisture conditions. The two months used here is based on what was practically feasible and is on 

the shorter side. In the future, it will be extended based on archived model data. 
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Figure 3:  Illustration of ASCAT pre -processing for 20130614 09 UTC . ASCAT 

observation based soil moisture products (unit: %) are converted to ◌▌
╪▼╬╪◄ soil 

moisture pseudo -observations (unit:  m3/m3).  

 

The surface data-assimilation in HARMONIE-AROME is prepared to handle ASCAT-based soil 

moisture pseudo-observations over each model grid-point from one data source only. This means that 

merging satellite-based soil moisture pseudo-observations from METOP-A and METOP-B is required 

prior to data assimilation. In case both METOP-A and METOP-B data exist over the same grid-point only 

METOP-A data are kept over that grid-point. The merging of satellite data is illustrated in Figure 4, for 

one particular case.  
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Figure 4 : Merging of ASCAT satellite data from METOP -A (green) and METOP -B 

(red) for 20140614  09 UTC. The merged data are marked blue.  

 Experiment al design  

As presented in Section 3 , the HARMONIE-AROME configuration of the HIRLAM -ALADIN 

NWP system has been setup over a Sou thern European domain  to investigate the prediction 

of four heavy precipitation events  as described in Table 1 .  For each event, four parallel 

experiments were run, as described in Table 2. For each precipitation event, the experiment 

named OI was run for a two -week period i n a 3 -hour data assimilation cycle mode, prior to 

the experimental periods. The purpose was to spin -up various aspects of the modelling 

system, such as surface state and bias correction coefficients. Thereafter this spun-up state 

was copied to the other three experiments (named OI -MESC, EKF-MESC and EKF-MESC-

SCAT) which were run in cycled data assimilation mode for a couple of days prior to the 

period of the experiment. The idea was to have a spun-up initial state consistent with the 

respective different data assimilation methods of the different experiments. In addition we 

allow for differences between the three experiments already from the very beg inning of the 

experimental periods.  

 

Table 2 : Description  of the four  experiments  applied to each precipitation event 

studied.  
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Experiment  Description  

OI HARMONIE-AROME reference system with surface data assimilation  

for temperature and relative humidity based on optimal interpolation 

with isotropic and homogenous structure functions  in the horizontal 

and  optimal interpolation in the vertical. Observations of two metre 

temperature and two metre relative humidity are assimilated.  

OI-MESC Settings as in experiment OI, except for MESCAN horizontally varying 

structure functions replacing the isotropic and homogenous structure 

functions in the horizontal and optimal interpolation . 

EKF-MESC Settings as in OI-MESC, except for an  SEKF being  used in the vertical 

instead of optimal interpolation.  

EKF-MESC-

SCAT 

Settings as in experiment  EKF-MESC, except for that ASCAT soil 

moisture pseudo -observations from METOP-A and METOP-B were 

assimilated with SEKF, in addition to observations of two metre 

temperature and two metre relative humidity.  

 

 

The idea of having four different parallel experiments  is first of all to investigate the 

sensitivity of the pred iction of various heavy precipitation events to different data 

assimilation enhancements. In addition, the results can give an indication of the sensitivity of 

the results to variations of the initial state and  of the predictability of each event. As shown 

in Table 1, the  three cases that were used to evaluate the enhanced surface data 

assimilation are associated with heavy precipitation that is studied within IMPREX . The cases 

cover both synoptically driven precipitation in mountainous areas and convective  

precipitation in flat terrain. The cases have the potential to be influenced by surface fluxes 

influenced by the surface state and the surface data assimilation . 
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 Results 

Demonstration of functionality  of enhancements  

The three main enhancements introduce d here into the HARMONIE -AROME system are 

presented in Section 4 and are related to : (1) horizontally dependent background error 

statistics, (2) application of a SEKF for vertical distribution of temperature and moisture 

information , and (3) assimilation o f ASCAT soil moisture data. The functionality of each of 

these enhancements can be highlighted by studying idealised experiments or by studying 

individual assimilation cycles.  

 

 

 

Figure 5 : Impact on  the two -metre relative humidity field  (unit in plot: 0 -1)  of one 

single two -metre relative humidity observation  located at  a position (marked with a 

black dot) close to the west -coast of France . The observed relati ve humidity is 

approximately 0.15 less than the corresponding model value.  Left is with  standard 

structure functions and middle  with  MESCAN structure functions.  Right part shows 

model orography (unit: m).  

 

In Figure 5 the functionality of applying the MESCAN structure functions is demonstrated 

and compared with utilizing the default  structure functions. The demonstration is for one 

single SYNOP Relative Humidity observation at the 2 -meter level (unit: 100%). The 

observation is located close to the west coast of France and the observed relative humidity 

is approximately 15% less than the corresponding model value. The position of the 
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observation is marked with a black dot. It can be seen how the land -sea mask and the 

orography influences the horizontal spread of the observational information when the 

MESCAN structure functions are appl ied. In Figure 6 the impact of one single two -metre 

temperature observation located in a valley within the Alps is shown. Clearly the distribution 

of observational information is influenced by orography when applying the MESCAN 

structure functions. The obs ervation represents more the conditions in low level terrain than 

at the top of the mountains and that is better handled by the MESCAN structure functions 

than by the original OI structure functions.  

 

 

 

Figure 6 : Impact on the two -metre temperature fiel d (unit: K ) of one single two -

metre temperature observation located at a position (marked with a black dot) in 

the Alps . The observed relati ve humidity is approximately 2 K larger  than the 

corresponding model value.  Left is with standard structure function s and middle 

with MESCAN structure functions. Right part shows model orography (unit: m).  

 

A major advantage of applying a SEKF scheme in the vertical , as compared to applying an 

optimal interpolation scheme is the non -static couplings between the observat ions and the 

surface model state variables. This functionality of the SEKF scheme is visualized in Figure 7, 

which shows the distribution of Jacobians for all surface model grid -points for an eight day 

period, 20140621 to 20130628 . The distribution is shown for  
╡╗

╦
 (unit: 1/m 3/m 3) and 

╣

╣
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(unit: K/K) for both 00 UTC (red) and 12 UTC (blue). Clearly, both at 00 and 12 UTC there is 

a significant variation of Jacobians within the surface grid -points of the domain. T his 

variation is due to different characteristics in different part s of the domain and also due to  

different weather situations and surface properties. In addition one can see that the 

distributions of the Jacobians are different between night and day.  For example,   
╣

╣
  

Jacobians are larger during night -time, indicating a stronger coupling when the solar 

radiation is small and when the transfer of heat from the deep soil to the surface makes a 

significant contribution. There is also a variation of Jacobians from one day  to another , 

which is not visualized in Figure 7. In the original OI default settings the values shown in the 

histograms of Figure 7 would have been represented by a single value instead of a wide 

distribution.  

 

The functionality of assimilating satellite based soil -moisture information from the ASCAT 

instrument in the form of ύ  soil moisture is demonstrated in Figure 8. The increments are 

presented as percentage of change of the corresponding background value.  Shown is the 

ύ  soil moisture increments at 20140625 18 UTC. The increments are  due to assimilation of 

satellite soil moisture information and to the assimilation of two -metre relative humidity and 

temperature information from synop stations. For ύ  soil moisture, however, the increments 

are larger along the paths of satellite passes . In Figure 8, two such satellite passage paths 

can be identified. For reference, we show also in Figure 8 the corresponding increments ύ  

soil moisture increments from  the OI reference system, assimilating humidity and 

temperature information from synop stations only. Note the difference in scales between 

the OI increments and the increments containing also satellite information. The structure  of 

the ASCAT based increments corresponds to the ones based on synop measurements only 

in some areas within the swaths, while also differences can be found.  The dominating 

impact of satellite information for ύ  soil moisture data assimilation increments is due to 

the error specif ication of the data assimilation and also due to the Jacobians of the Kalman -

filter methodology. For ύ  soil moisture and also for soil temperatures satellite information 

is less dominant in the assimilation increments.   
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Figure 7: Histogram of Jacobians for  surface grid -points within the model domain 

for the period 201406 21 to 20130628 .  Histograms to the left are  for  
⸗╡╗□

⸗╦
 (unit: 

1/m 3/m 3) and hist ograms to the right are for  
⸗╣□

⸗╣
  (unit: K/K). Red histograms are 

for 00 UTC and blue histograms are for 12 UTC.  

 

 

 

Figure 8: Data assimilation increments of Soil ◌▌ soil moisture (uni t:  % of change of 

the corresponding background value) for experiment EKF -MESC-SCAT (left) and OI 

(ri ght)  at 201406 25 18 UTC.  
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Verification scores 

A common way of measuring forecast quality in the NWP community is to compare the 

forecasts of weather parameters with the corresponding observations at the time for which 

the forecast is valid. The error, ȟ of the forecast of a particular variable X f, for a particular 

observation site is given by;  

 

=  Xf-Xo                  (13) 

 

where Xo is the corresponding observed variable, treated as the truth. For forecasts of 

surface parameters synop observations are used for verification and for forecasts of upper -

air parameters radiosonde observations are used. Two typical statistical measures used  are 

bias and standard deviation of forecast errors. The bias, , provides a measure of the 

systematic error in the forecast, as compared with observations, and is defined by:  

 

‐Ӷ В ‐                             (14) 

 

where n is the error for one particular variable, for one particular time and for one particular observation 

site. N is the number of comparisons between model and observation. The standard deviation, St, provides 

a measure of the dispersion of the forecast errors and is given by: 

 

St= В ‐ ‐ Ӷ                             (15) 

 

Usually the stat istics is calculated as function of forecast length and presented as an 

average, either for all observ ation sites within the model domain, or for the observations 

within a specific region of interest.   

In terms of forecast verification scores, t he modifications of surface data assimilation have a 

considerable impact for the three events studied. In Figure 9 the bias and standard 

deviation of temperature and relative humidity  forecasts for verification against all 

radiosonde measurements within the entire domain are shown. The scores are accumulated 

over +12 h and +24 h forecast ranges and are presented for different vertical atmospheric 
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levels, for each event in Table 1 . In t erms of bias , the difference s between the four different 

experiments are largest at the surface but extend up to a vertical level of 50 0 hPa. Kalman-

filter based experiments result in less biased low level relative humidity forecasts.  In terms of 

standard deviations, the impact of the different surface data assimilation procedures  is most 

evident for relative humidity and it extends up to a vertical level of at least 500 hPa.  In 

terms of  bias and standard deviation  profiles of temperature and relative humid ity, the 

largest difference s between the experiments are for the convective event that took place in 

Northern Europe between 20130721 and 20130728  (event number 2 in Table 1). . 

 

In Figure 10 the corresponding scores for forecasts of 12  h accumulated precip itation 

verified against all Synop measurements are presented as a function of forecast length 

between +12 and + 24 hours.  Again, the scores are in the form of bias and standard 

deviation. It can be seen that the differences in surface data assimilation influence the 

precipitation scores, in particular for forecast ranges up to +18 hours.  In terms of 

verification scores for precipitation forecas ts the experiments with an  enhanced surface data 

assimilation performs better than the default data assimilation . 
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Figure 9: Bias (left  set of curves ) and standard deviation (right  set of curves ) of 

temperature (left  panel s, unit: K) and relative humidity (right  panels , unit: %)  

forecasts for verification against all radiosonde observations  within the enti re 

model domain . Verification scores are accumulated for +12 and +24 h forecasts and 

shown for different vertical levels. Different rows are for different cases and 

different colours are for different experiments.   




























